Assessment of Ripening Degree of Avocado by Electrical Impedance Spectroscopy and Support Vector Machine

Author:

Islam Monzurul1ORCID,Wahid Khan1ORCID,Dinh Anh1

Affiliation:

1. Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon S7N 5A2, Canada

Abstract

Avocado, a climacteric fruit, exerts high rate of respiration and ethylene production and thereby subject to ripening during storage. Therefore, its ripening is a significant factor to impart optimum quality in postharvest storage. To understand the dynamics of ripening and to assess the degree of ripening in the avocado, electrical sensing technique is utilized in this study. In particular, electrical impedance spectroscopy (EIS) is found to uncover the physiological and structural characteristics in plants and vegetables and to follow physiological progressions due to environmental impacts. In this work, we present an approach that will integrate EIS and machine learning technique that allows us to monitor the ripening degree of the avocado. It is evident from our study that the impedance absolute magnitude of the avocado gradually decreases as the ripening stages (firm, breaking, ripe, and overripe) proceed at a particular frequency. In addition, principal component analysis shows that impedance magnitude (two principal components combined explain 99.95% variation) has better discrimination capabilities for ripening degrees compared to impedance phase angle, impedance real part, and impedance imaginary part. Our classifier utilizes two principal component features over 100 EIS responses and demonstrates classification over firm, breaking, ripe, and overripe stages with an accuracy of 90%, precision of 93%, recall of 90%, f1-score of 90%, and auc of 88%. The study offers plant scientists a low cost and nondestructive approach to monitor postharvest ripening process for quality control during storage.

Publisher

Hindawi Limited

Subject

Safety, Risk, Reliability and Quality,Food Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ripening Stage Assessment of Royal Gala Apple using KNN on PCA reduced Bio-impedance Data;2024 IEEE Applied Sensing Conference (APSCON);2024-01-22

2. Fast Electrochemical Impedance Measurement and Classification System Based on Machine Learning Algorithms;2023 30th IEEE International Conference on Electronics, Circuits and Systems (ICECS);2023-12-04

3. Bioimpedance Measurement of Avocado Fruit Using Magnetic Induction Spectroscopy;IEEE Transactions on AgriFood Electronics;2023-12

4. Printed sustainable elastomeric conductor for soft electronics;Nature Communications;2023-11-06

5. Moisture Content Detection of Tomato Leaves Based on Electrical Impedance Spectroscopy;Communications in Soil Science and Plant Analysis;2023-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3