Do Gender or Major Influence the Performance in Programming Learning? Teaching Mode Decision Based on Exercise Series Analysis

Author:

Gao Zhizezhang1ORCID,Zhang Yan1ORCID,Zhang RuiPeng1ORCID,Sun Xia1ORCID,Feng Jun1ORCID

Affiliation:

1. Northwest University, Xi’an, ShaanXi, China

Abstract

Both traditional teaching and online teaching advocate individualized education. One of the difficulties on exploring possible improvements of instructional design is the challenging process of data collection. Existing research mainly focuses on the exam score of students but pays little attention to students' daily practice. As an effective method to handle time-series dataset, the generalized estimating equations (GEE) have not been used in this research field. Considering above issues, we first propose an experimental paradigm of programming performance analysis based on the performance record of students’ daily practice-exam and finish collecting a complete time-series dataset in one semester, including students’ individual attributes, learning behavior, and learning performance. Then, we propose an approach that analyzes practice-exam time-series dataset based on GEE to study the influence of individual attributes and learning behavior on learning performance. It is the first time to apply the GEE method for ordinal multinomial responses in this research field, by which we conclude several results that gender or major does have a certain difference on the programming learning. The longer the answer time and the less the cost time, the better the students' performance. Regardless of gender, students tend to cram for the exam and perform a little worse in the daily exercise. Finally, targeting at two important individual attributes, we give corresponding teaching mode decisions that university should teach students programming by major and teacher should give different teaching methods to students of different genders at different time points.

Funder

Ministry of Education

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference30 articles.

1. Social learning networks: A brief survey

2. Research context and progress of learner model from the perspective of learning analysis;M. Zhiqiang;Modern Distance Education,2016

3. Intellectual competence;T. Chamorro-Premuzic;The Psychologist,2005

4. Intellectual ability, learning style, personality, achievement motivation and academic success of psychology students in higher education

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3