Affiliation:
1. School of Atmospheric Sciences Nanjing University Nanjing China
2. CMA Key Laboratory of Transportation Meteorology Nanjing Joint Institute for Atmospheric Sciences Nanjing China
Abstract
AbstractWe have successfully incorporated a 3‐dimensional sub‐grid terrain solar radiative effect (3D STSRE) parameterization scheme into a convection‐permitting Weather Research and Forecasting model (WRF_CPM) in this study. Impacts of 3D STSRE scheme on the ability of WRF_CPM in forecasting the precipitation in summer over the Tibetan Plateau (TP) and nearby regions with complex terrain have been systematically addressed by conducting experiments without and with the 3D STSRE scheme. Results show that the application of 3D STSRE scheme can obviously mitigate the overestimation of surface solar radiation (SSR) and rainfall over TP and nearby regions, especially over the areas with much more rugged terrain (i.e., southern TP) in the WRF_CPM without 3D STSRE scheme. Further mechanism analyses indicate that the decreased surface heating induced by the reduction of SSR reduces the intensity of the thermal‐low pressure over the TP, which leads to the diminished strength of southwesterly winds and thereafter the weaker convergence of moisture flux over the southern TP. Moreover, the weakened surface thermal forcing makes the local atmosphere more stable, suppressing the vertical water vapor transport and local convection. These effects greatly alleviate the overestimation of precipitation over the southern TP produced by the WRF_CPM without the 3D STSRE scheme.
Funder
National Natural Science Foundation of China
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献