A New Collaborative Filtering Recommendation Method Based on Transductive SVM and Active Learning

Author:

Wang Xibin12ORCID,Dai Zhenyu3,Li Hui3ORCID,Yang Jianfeng1

Affiliation:

1. School of Data Science, Guizhou Institute of Technology, Guiyang 550003, Guizhou, China

2. Special Key Laboratory of Artificial Intelligence and Intelligent Control of Guizhou Province, Guiyang 550003, Guizhou, China

3. College of Computer Science & Technology, Guizhou University, Guiyang 550025, Guizhou, China

Abstract

In the collaborative filtering (CF) recommendation applications, the sparsity of user rating data, the effectiveness of cold start, the strategy of item information neglection, and user profiles construction are critical to both the efficiency and effectiveness of the recommendation algorithm. In order to solve the above problems, a personalized recommendation approach combining semisupervised support vector machine and active learning (AL) is proposed in this paper, which combines the benefits of both TSVM (Transductive Support Vector Machine) and AL. Firstly, a “maximum-minimum segmentation” of version space-based AL strategy is developed to choose the most informative unlabeled samples for human annotation; it aims to choose the least data which is enough to train a high-quality model. And then, an AL-based semisupervised TSVM algorithm is proposed to make full use of the distribution characteristics of unlabeled samples by adding a manifold regularization into objective function, which is helpful to make the proposed algorithm to overcome the traditional drawbacks of TSVM. Furthermore, during the procedure of recommendation model construction, not only user behavior information and item information, but also demographic information is utilized. Due to the benefits of the above design, the quality of unlabeled sample annotation can be improved; meanwhile, both the data sparsity and cold start problems are alleviated. Finally, the effectiveness of the proposed algorithm is verified based on UCI datasets, and then it is applied to personalized recommendation. The experimental results show the superiority of the proposed method in both effectiveness and efficiency.

Funder

Technology Foundation of Guizhou Province

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Reference37 articles.

1. QoS-aware web service recommendation by collaborative filtering;Z. Zheng;IEEE Transactions on Services Computing,2011

2. A new user similarity model to improve the accuracy of collaborative filtering

3. SettlesB.Active learning literature survey2009Madison, WS, USAUniversity of Wisconsin-MadisonTechnical Report 1648

4. Empirical analysis of predictive algorithms for collaborative filtering;J. S. Breese;Uncertainty in Artificial Intelligence,2013

5. Item-based top- N recommendation algorithms

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3