Enhancing Personalized Recommendation by Transductive Support Vector Machine and Active Learning

Author:

Wang Xibin123ORCID,Li Yunji1,Chen Jing4,Yang Jianfeng12

Affiliation:

1. School of Data Science, Guizhou Institute of Technology, Guiyang 550003, Guizhou, China

2. Special Key Laboratory of Artificial Intelligence and Intelligent Control of Guizhou Province, Guiyang 550003, Guizhou, China

3. Key Laboratory of Electric Power Big Data of Guizhou Province, Guiyang 550003, Guizhou, China

4. College of Information Engineering, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China

Abstract

As an important component of information service networks, personalized recommendation technology provides users with better options and enables them to obtain information anytime and anywhere. Collaborative filtering (CF) is a successful and widely used form of this technology. However, the traditional CF recommendation algorithm is ineffective in environments with frequent entry of new users and high levels of data sparsity. For new users in the system, few or no scores, labels, or other such information is available, leading to the user cold start problem. Simultaneously, data sparsity leads to the selection of unreasonable neighbors, which reduces the recommendation accuracy. In addition, the traditional CF recommendation algorithm ignores the inherent connections between users’ preferences and their basic information (such as demographics). Users with similar demographic information are likely to have similar preferences, which can serve as a good basis for finding neighbors. To address the aforementioned problems, we propose a recommendation model that combines active learning (AL) and a semi-supervised transductive support vector machine (TSVM). To enable neighbors to be found quickly and accurately, similar users are clustered together on the basis of their basic information. Then, the TSVM-based classifier is trained on each cluster. To improve the quality of sample labeling and thus the classifier performance, an active learning method based on the distance strategy and a multiclassifier voting mechanism is implemented. Finally, the TSVM-based recommendation model is trained on the labeled samples. The extensive experiments conducted using a real data set from MovieLens demonstrate that the proposed model effectively alleviates the aforementioned cold start and data sparsity problems.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3