Hybrid Collaborative Fusion Based Product Recommendation Exploiting Sentiments from Implicit and Explicit Reviews

Author:

Zafar Ali Khan N,Mahalakshmi R.1

Affiliation:

1. Associate Professor and Program Chair CSE, Department of CSE, School of Engineering, Presidency University, Bengaluru, Karnataka, India

Abstract

Product recommendation is an important functionality in online ecommerce systems. The goal of the recommendation system is to recommend products with has higher purchase success ratio. User profile, product purchase history etc. have been used in many works to provide high quality recommendations. Product reviews is one of the important source for personalized recommendation. Typical collaborative recommendation systems are built upon user rating on products. But in many cases, these rating information are inaccurate or not available. There is also a problem of biased reviews decreasing the accuracy of recommendation systems. This work proposes a aspect mining collaborative fusion based recommendation system considering both the implicit and explicit reviews. The sentiments about different aspects mined from reviews are translated to multi-dimensional ratings. These ratings are then fused with user profile and demographic attributes to improve the quality of recommendation. The proposed recommendation system has 3.79% lower RMSE, 4.51% lower MAE and 22% lower MRE compared to most recent collaborative filtering based recommendation system.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3