Automatic Generation of Test Cases Based on Genetic Algorithm and RBF Neural Network

Author:

Liu Zhenpeng1ORCID,Yang Xianwei1,Zhang Shichen1,Liu Yi1,Zhao Yonggang2,Zheng Weihua34ORCID

Affiliation:

1. School of Cyberspace Security and Computer, Hebei University, Baoding, China

2. School of Management Engineering and Business, Hebei University of Engineering, Handan, China

3. School of Information Engineering, Handan University, Handan 056005, China

4. School of Information Science and Engineering, Xinjiang University of Science and Technology, Kuerle 841000, China

Abstract

Software testing plays an important role in improving the quality of software, but the design of test cases requires a lot of manpower, material resources, and time, and designers tend to be subjective when designing test cases. To solve this problem and make the test cases have objectivity and greater coverage, a branch coverage test case automatic generation method based on genetic algorithm and RBF neural network algorithm (GAR) is proposed. In terms of test case generation, based on the genetic algorithm optimized in this paper, a certain number of test case samples are randomly selected to train the RBF neural network to simulate the fitness function and to calculate the individual fitness value. The experiment uses 7 C language codes to automatically generate test cases and compares the experimental data generated by the branch coverage test case generation method based on adaptive genetic algorithm (PDGA), traditional genetic algorithm (SGA), and random test generation method (random) to evaluate the proposed algorithm. The experimental results show that the method is feasible and effective, the branch coverage is increased in the generation of test cases, and the number of iterations of the population is less.

Funder

Natural Science Foundation of Hebei Province

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3