An Optimized Ensemble Deep Learning Model for Predicting Plant miRNA–IncRNA Based on Artificial Gorilla Troops Algorithm

Author:

Hamdy Walid1,Ismail Amr1,Awad Wael A.2,Ibrahim Ali H.1,Hassanien Aboul Ella3ORCID

Affiliation:

1. Faculty of Science, Port Said University, Port Said 42511, Egypt

2. Faculty of Computers and Artificial Intelligence, Damietta University, El-Gadeeda 34519, Egypt

3. Faculty of Computers and Artificial Intelligence, Cairo University, Giza 12613, Egypt

Abstract

MicroRNAs (miRNA) are small, non-coding regulatory molecules whose effective alteration might result in abnormal gene manifestation in the downstream pathway of their target. miRNA gene variants can impact miRNA transcription, maturation, or target selectivity, impairing their usefulness in plant growth and stress responses. Simple Sequence Repeat (SSR) based on miRNA is a newly introduced functional marker that has recently been used in plant breeding. MicroRNA and long non-coding RNA (lncRNA) are two examples of non-coding RNA (ncRNA) that play a vital role in controlling the biological processes of animals and plants. According to recent studies, the major objective for decoding their functional activities is predicting the relationship between lncRNA and miRNA. Traditional feature-based classification systems’ prediction accuracy and reliability are frequently harmed because of the small data size, human factors’ limits, and huge quantity of noise. This paper proposes an optimized deep learning model built with Independently Recurrent Neural Networks (IndRNNs) and Convolutional Neural Networks (CNNs) to predict the interaction in plants between lncRNA and miRNA. The deep learning ensemble model automatically investigates the function characteristics of genetic sequences. The proposed model’s main advantage is the enhanced accuracy in plant miRNA–IncRNA prediction due to optimal hyperparameter tuning, which is performed by the artificial Gorilla Troops Algorithm and the proposed intelligent preying algorithm. IndRNN is adapted to derive the representation of learned sequence dependencies and sequence features by overcoming the inaccuracies of natural factors in traditional feature architecture. Working with large-scale data, the suggested model outperforms the current deep learning model and shallow machine learning, notably for extended sequences, according to the findings of the experiments, where we obtained an accuracy of 97.7% in the proposed method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3