lncRNA–disease association prediction method based on the nearest neighbor matrix completion model

Author:

Du Xiao-xin,Liu Yan,Wang Bo,Zhang Jian-fei

Abstract

AbstractState-of-the-art medical studies proved that long noncoding ribonucleic acids (lncRNAs) are closely related to various diseases. However, their large-scale detection in biological experiments is problematic and expensive. To aid screening and improve the efficiency of biological experiments, this study introduced a prediction model based on the nearest neighbor concept for lncRNA–disease association prediction. We used a new similarity algorithm in the model that fused potential associations. The experimental validation of the proposed algorithm proved its superiority over the available Cosine, Pearson, and Jaccard similarity algorithms. Satisfactory results in the comparative leave-one-out cross-validation test (with AUC = 0.96) confirmed its excellent predictive performance. Finally, the proposed model’s reliability was confirmed by performing predictions using a new dataset, yielding AUC = 0.92.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference48 articles.

1. Pauli, A., Rinn, J. L. & Schier, A. F. Non-coding RNAs as regulators of embryogenesis. Nat. Rev. Genet. 12(2), 136–149 (2011).

2. Guttman, M. et al. Ab initio reconstruction of cell type–specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol. 28(5), 503–510 (2010).

3. Hüttenhofer, A., Schattner, P. & Polacek, N. Non-coding RNAs: Hope or hype?. Trends Genet. 21(5), 289–297 (2005).

4. Chen, X. M., Zhang, D. D., Luo, J. J. & Chen, R. S. Advances in long non-coding RNA research. Adv. Biochem. Biophys. 41(10), 997–1009 (2014) (in Chinese).

5. Chen, X. et al. Long non-coding RNAs and complex diseases: From experimental results to computational models. Brief. Bioinform. 18(4), 558–576 (2017).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3