The integration of machine learning into automated test generation: A systematic mapping study

Author:

Fontes Afonso1,Gay Gregory1ORCID

Affiliation:

1. Department of Computer Science and Engineering Chalmers and the University of Gothenburg Gothenburg Sweden

Abstract

AbstractMachine learning (ML) may enable effective automated test generation. We characterize emerging research, examining testing practices, researcher goals, ML techniques applied, evaluation, and challenges in this intersection by performing. We perform a systematic mapping study on a sample of 124 publications. ML generates input for system, GUI, unit, performance, and combinatorial testing or improves the performance of existing generation methods. ML is also used to generate test verdicts, property‐based, and expected output oracles. Supervised learning—often based on neural networks—and reinforcement learning—often based on Q‐learning—are common, and some publications also employ unsupervised or semi‐supervised learning. (Semi‐/Un‐)Supervised approaches are evaluated using both traditional testing metrics and ML‐related metrics (e.g., accuracy), while reinforcement learning is often evaluated using testing metrics tied to the reward function. The work‐to‐date shows great promise, but there are open challenges regarding training data, retraining, scalability, evaluation complexity, ML algorithms employed—and how they are applied—benchmarks, and replicability. Our findings can serve as a roadmap and inspiration for researchers in this field.

Funder

Vetenskapsrådet

Publisher

Wiley

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3