Effects of Upstream Component and Air Injection on Water Droplet Impingement Characteristics for Downstream Surfaces

Author:

Shen Xiaobin12ORCID,Tan Yundan1,Yu Rendong1,Liu Xiaochuan1,Lin Guiping1,Xu Zhiqiang3,Guo Yuandong1ORCID

Affiliation:

1. Laboratory of Fundamental Science on Ergonomics and Environmental Control, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

2. Key Laboratory of Icing and Anti/De-Icing, China Aerodynamics Research and Development Center, Mianyang, Sichuan 621000, China

3. Wuhan Aviation Instrument Corporation, Wuhan 430074, China

Abstract

Water droplet changes its movement direction and velocity when it bypasses an aircraft component with the surrounding airflow or gets blown by air injection from the inner part. When the deflected droplet impacts on the downstream surface, its impingement characteristics would be different from those without the frontal effects. In this article, a Lagrangian method was developed to include those upstream effects on the droplet collection efficiency. Validation cases were carried out for a cylinder and an MS (1)-0317 airfoil, whereas a multielement airfoil and an engine cone with a hot air film-heating anti-icing system were computed to investigate the effects of the upstream component and air injection on the impingement characteristics of downstream surfaces. It is found that the present collection efficiencies are in good agreement with the experimental data and the simulation results obtained by the Eulerian and traditional Lagrangian methods when not affected by those upstream factors. The droplet deflections and trajectory crossings are observed clearly under the influence of the upstream component, and the Lagrangian results of downstream surfaces differ from those of the Eulerian method. In addition, due to the air injection from the inner engine cone, the peak collection efficiency on the cone surface increases with the decrease of the droplet diameter and the value even exceeds one when the droplet is small. This work is helpful for the understanding of the droplet motion and the accuracy of aircraft icing simulation.

Funder

Open Fund of Key Laboratory of Icing and Anti/De-icing

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3