Analysis of Numerical Methods for Droplet Impingement Characteristics under Aircraft Icing Conditions

Author:

Shen XiaobinORCID,Zhao Wenzhao,Qi Zicheng,Lin Guiping,Wang Liangquan

Abstract

The investigation of super-cooled droplet impingement characteristics is the most important step for aircraft icing and anti-icing/de-icing analyses. The Lagrangian method and the Eulerian method are widely used to compute the droplet motion and collection efficiency, and the two methods are considered to obtain almost the same results for surface impingement characteristics under icing conditions. The models and implementation approaches of the two methods were established in this work, and the simulations of droplet motion were carried out for a NACA 0012 airfoil, a 2D section of an A320 head, a multi-element airfoil, and an icing wind tunnel. The collection efficiencies of the NACA 0012 airfoil obtained by the present Lagrangian and Eulerian methods show good agreement with the results in the literature, validating the established methods. The droplet impingement characteristics of the two methods are consistent for the aircraft surfaces without upstream trajectory deflections. However, when the droplet motion is deflected by the frontal body before hitting the rear surfaces, the results obtained by the two methods are different whether the droplet trajectories intersect or not, which subverts the traditional opinion that the Lagrangian and Eulerian methods would obtain the same result of the droplet impingement characteristics. The reason is studied in detail according to the droplet motion results in the icing wind tunnel. The findings of this work are helpful for the accuracy of aircraft icing and anti-icing/de-icing simulations, and useful for the development of airworthiness certification.

Funder

National Natural Science Foundation of China

Open Fund of Rotor Aerodynamics Key Laboratory

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3