Numerical Investigation of the Water-Drop Impact on Low-Drag Airfoil Using the Euler–Euler Approach and Eulerian Wall Film Model

Author:

Long Lingjie1,Liu Xiaogang12,Zhao Chenxi1,Wang Zhongyi2,Sun Haifeng1

Affiliation:

1. Mechanical Power Engineering, Harbin University of Science and Technology, Harbin 150080, China

2. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

The Eulerian Wall Film (EWF) model is a mathematical model employed to analyze the behavior of fluid films on a surface. The model has been widely adopted in various engineering applications due to its accuracy and efficiency. However, it is rarely applied in the aerospace field. The solution of the water-drop impact constitutes an indispensable prerequisite for the computation of ice accretion on the exterior of aircraft wings. In this study, we propose a novel approach for the estimation of water-drop impact on wing surfaces by integrating the Euler–Euler approach and EWF model. This approach is capable of furnishing a point of reference and a theoretical foundation for prospective water-drop impact experiments. Through comparison with pertinent experimental findings, the precision of the numerical simulation approach utilized in this paper is substantiated. Specifically, the research object is the NACA653-218 airfoil of the C-919 transport aircraft, for which the aerodynamic properties, water-drop collision, and liquid film flow characteristics during steady flight were simulated.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3