Affiliation:
1. Mechanical Power Engineering, Harbin University of Science and Technology, Harbin 150080, China
2. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
Abstract
The Eulerian Wall Film (EWF) model is a mathematical model employed to analyze the behavior of fluid films on a surface. The model has been widely adopted in various engineering applications due to its accuracy and efficiency. However, it is rarely applied in the aerospace field. The solution of the water-drop impact constitutes an indispensable prerequisite for the computation of ice accretion on the exterior of aircraft wings. In this study, we propose a novel approach for the estimation of water-drop impact on wing surfaces by integrating the Euler–Euler approach and EWF model. This approach is capable of furnishing a point of reference and a theoretical foundation for prospective water-drop impact experiments. Through comparison with pertinent experimental findings, the precision of the numerical simulation approach utilized in this paper is substantiated. Specifically, the research object is the NACA653-218 airfoil of the C-919 transport aircraft, for which the aerodynamic properties, water-drop collision, and liquid film flow characteristics during steady flight were simulated.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Heilongjiang Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献