Research on the Methods for Obtaining Droplet Impingement Characteristics in the Lagrangian Framework

Author:

Shen Xiaobin1ORCID,Xiao Chunhua2,Ning Yijun3,Wang Huanfa1ORCID,Lin Guiping14,Wang Liangquan5

Affiliation:

1. Laboratory of Fundamental Science on Ergonomics and Environmental Control, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

2. Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

3. Shenyang Key Laboratory of Aircraft Icing and Ice Protection, AVIC Aerodynamics Research Institute, Shenyang 110034, China

4. International Innovation Institute, Beihang University, Hangzhou 311115, China

5. Key Laboratory of Rotor Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

Abstract

The impact of supercooled water droplets is the cause of aircraft icing, and the acquisition of impingement characteristics is the key to icing prediction and the design of ice protection systems. The introduction of water droplet collection efficiency is required to obtain the characteristics for the Lagrangian method. In this work, a traditional flow tube method, a local flow tube method, and a statistical method are established to calculate the local collection efficiency, based on Lagrangian droplet trajectories. Through the numerical simulations of the air–droplet flow field around an NACA 0012 airfoil, the accuracies of the three methods in regard to collection efficiency are verified. Then, these three methods are applied to obtain the results for water droplet trajectories and the collection efficiency of an S-shaped duct, a 2D engine cone section and an icing wind tunnel. The results show that the distributions of water droplet collection efficiency obtained by the three methods are consistent and the three methods are all feasible when the water droplets do not overlap or cross before hitting the aircraft surfaces. When the water droplets are shadowed by upstream surfaces or blown by air injection, the droplet trajectories might overlap or even cross, and the local collection efficiencies obtained by the traditional flow tube method, local flow tube method, and statistical method might differ. The statistical method is relatively accurate. However, not all the droplet impingement characteristics obtained by the three methods are different due to these effects, and the non-crossing of the droplet trajectories is not a necessary condition for the use of the flow tube method. The effects of trajectory crossings are analyzed and discussed in detail in different situations for the three methods. This work is helpful for understanding and accurately calculating the droplet impingement characteristics and is of great significance for simulations of the aircraft icing process and anti/de-icing range.

Funder

National Natural Science Foundation of China

Open Fund of Key Laboratory of Rotor Aerodynamics

Shenyang Key Laboratory of Aircraft Icing and Ice Protection

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3