Functionalization of Carbon Electrodes with Nanotitania by Atomic Layer Deposition

Author:

De Souza Graciano B.12ORCID,Hotza Dachamir1ORCID,Janßen Rolf3ORCID,Furlan Kaline P.3ORCID,Rambo Carlos R.12ORCID

Affiliation:

1. Graduate Program in Materials Science and Engineering, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianopolis 88040-900, Santa Catarina, Brazil

2. Laboratory of Electrical Materials, Department of Electrical and Electronic Engineering, Federal University of Santa Catarina, Florianopolis 88040-900, Santa Catarina, Brazil

3. Institute of Advanced Ceramics, Integrated Materials Systems Group, Hamburg University of Technology (TUHH), Denickerstraße 15 21073, Hamburg, Germany

Abstract

Carbon fibers are materials with a very high surface area and are interesting for applications such as filters, fire-resistant heat insulation, photocatalysis, and capacitor electrodes. Moreover, thermal burnout can easily remove these fibers, making them ideal templates for high-precision coatings or keeping them within the coated structure, generating nanostructured composites. In this work, two different substrates, carbon felt and bacterial nanocellulose were coated by TiO2 with atomic layer deposition (ALD). After deposition, the templates were pyrolyzed or further removed by burnout in the air. The microstructure evolution of the 3D interlocked-fibers structures was characterized by scanning electron microscopy and nitrogen adsorption surface area after each step. Stable anatase was present as a single TiO2 phase even after heat treatment at 800°C. Moreover, electrochemical impedance spectroscopy and constant current charge-discharge were employed to investigate the electrochemical properties of the samples. Our results show that all samples display a uniform layer after ALD and that the surface area decreases with an increasing number of ALD cycles. After burnout, the 3D structures presented a straw-like appearance to the shells. Nonetheless, both samples presented a power density comparable to a porous NiO/C, with the pyrolyzed bacterial nanocellulose sample displaying a higher pseudocapacitance performance than the carbon-felt samples.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3