Construction and Application of a Data-Driven Abstract Extraction Model for English Text

Author:

Peng Hui1ORCID

Affiliation:

1. Wuhan Huaxia University of Technology, Wuhan, Hubei 430000, China

Abstract

In this paper, a single English text is taken as the research object, and the automatic extraction method of text summary is studied using data-driven method. This paper takes a single text as the research object, establishes the connection relationship between article sentences, and proposes a method of automatic extraction of text summary based on graph model and topic model. The method combines the text graph model, complex network theory, and LDA topic model to construct a sentence synthesis scoring function to calculate the text single-sentence weights and output the sentences within the text threshold in descending order as text summaries. The algorithm improves the readability of the text summary while providing enough information for the text summary. In this paper, we propose a BERT-based topic-aware text summarization model based on a neural topic model. The approach uses the potential topic embedding representation encoded by the neural topic model to match with the embedding representation of BERT to guide topic generation to meet the requirements of semantic representation of text and explores topic inference and summary generation jointly in an end-to-end manner through the transformer architecture to capture semantic features while modelling long-range dependencies by a self-attentive mechanism. In this paper, we propose improvements based on pretrained models on both extractive and generative algorithms, making them enhanced for global information memory. Combining the advantages of both algorithms, a new joint model is proposed, which makes it possible to generate summaries that are more consistent with the original topic and have a reduced repetition rate for evenly distributed article information. Comparative experiments were conducted on several datasets and small uniformly distributed private datasets were constructed. In several comparative experiments, the evaluation metrics were improved by up to 2.5 percentage points, proving the effectiveness of the method, and a prototype system for an automatic abstract generation was built to demonstrate the results.

Funder

Wuhan Huaxia University of Technology

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3