Data-driven detection of counterpressing in professional football

Author:

Bauer PascalORCID,Anzer GabrielORCID

Abstract

AbstractDetecting counterpressing is an important task for any professional match-analyst in football (soccer), but is being done exclusively manually by observing video footage. The purpose of this paper is not only to automatically identify this strategy, but also to derive metrics that support coaches with the analysis of transition situations. Additionally, we want to infer objective influence factors for its success and assess the validity of peer-created rules of thumb established in by practitioners. Based on a combination of positional and event data we detect counterpressing situations as a supervised machine learning task. Together, with professional match-analysis experts we discussed and consolidated a consistent definition, extracted 134 features and manually labeled more than 20, 000 defensive transition situations from 97 professional football matches. The extreme gradient boosting model—with an area under the curve of $$87.4\%$$ 87.4 % on the labeled test data—enabled us to judge how quickly teams can win the ball back with counterpressing strategies, how many shots they create or allow immediately afterwards and to determine what the most important success drivers are. We applied this automatic detection on all matches from six full seasons of the German Bundesliga and quantified the defensive and offensive consequences when applying counterpressing for each team. Automating the task saves analysts a tremendous amount of time, standardizes the otherwise subjective task, and allows to identify trends within larger data-sets. We present an effective way of how the detection and the lessons learned from this investigation are integrated effectively into common match-analysis processes.

Funder

Eberhard Karls Universität Tübingen

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3