Marginalized Point Mass Filter with Estimating Tidal Depth Bias for Underwater Terrain-Aided Navigation

Author:

Peng Dongdong123ORCID,Zhou Tian123ORCID,Xu Chao123ORCID,Zhang Wanyuan123ORCID,Shen Jiajun123ORCID

Affiliation:

1. Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China

2. Key Laboratory of Marine Information Acquisition and Security (Harbin Engineering University), Ministry of Industry and Information Technology, Harbin 150001, China

3. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

Terrain-aided navigation is a promising approach to submerged position updates for autonomous underwater vehicles by matching terrain measurements against an underwater reference map. With an accurate prediction of tidal depth bias, a two-dimensional point mass filter, only estimating the horizontal position, has been proven to be effective for terrain-aided navigation. However, the tidal depth bias is unpredictable or predicts in many cases, which will result in the rapid performance degradation if a two-dimensional point mass filter is still used. To address this, a marginalized point mass filter in three dimensions is presented to concurrently estimate and compensate the tidal depth bias in this paper. In the method, the tidal depth bias is extended as a state variable and estimated using the Kalman filter, whereas the horizontal position state is still estimated by the original two-dimensional point mass filter. With the multibeam sonar, simulation experiments in a real underwater digital map demonstrate that the proposed method is able to accurately estimate the tidal depth bias and to obtain the robust navigation solution in suitable terrain.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3