Explicit GPC Control Applied to an Approximated Linearized Crane System

Author:

Fonseca Daniel Guerra Vale da12ORCID,Dantas André Felipe O. de A.3ORCID,Dórea Carlos Eduardo Trabuco1ORCID,Maitelli André Laurindo1ORCID

Affiliation:

1. Department of Automation and Computer Engineering, CT, Federal University of Rio Grande do Norte, 59078-970 Natal, RN, Brazil

2. Federal Institute of Education, Science and Technology of Rio Grande do Norte, Natal 59112-490, Brazil

3. Master of Process Engineering, Potiguar University, Natal 59054-180, Brazil

Abstract

This paper proposes a MIMO Explicit Generalized Predictive Control (EGPC) for minimizing payload oscillation of a Gantry Crane System subject to input and output constraints. In order to control the crane system efficiently, the traditional GPC formulation, based on online Quadratic Programming (QP), is rewritten as a multiparametric quadratic programming problem (mp-QP). An explicit Piecewise Affine (PWA) control law is obtained and holds the same performance as online QP. To test effectiveness, the proposed method is compared with two GPC formulations: one that handle constraints (CGPC) and another that does not handle constraints (UGPC). Results show that both EGPC and CGPC have better performance, reducing the payload swing when compared to UGPC. Also both EGPC and CGPC are able to control the system without constraint violation. When comparing EGPC to CGPC, the first is able to calculate (during time step) the control action faster than the second. The simulations prove that the overall performance of EGPC is superior to the other used formulations.

Funder

Federal University of Rio Grande do Norte

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Science Applications,Modelling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3