Hybrid Model-Based and Data-Driven Solution for Uncertainty Quantification at the Microscale

Author:

Mariani Stefano1ORCID,Quesada-Molina Jose Pablo12

Affiliation:

1. Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy

2. Department of Mechanical Engineering, Universidad de Costa Rica, Rodrigo Facio Brenes Campus, Montes de Oca, San José 11501-2060, Costa Rica

Abstract

Background: Due to their size, microelectromechanical systems (MEMS) display performance indices affected by uncertainties linked to the mechanical properties and to the geometry of the films constituting their movable parts. Objective: In this perspective, a recently proposed multiscale and hybrid solution for uncertainty quantification is discussed. Methods: The proposed method is based on the (deep) learning of the morphology-affected elasticity of the polycrystalline films and of the microfabrication-induced defective geometry of the devices. The results at the material and at the device levels are linked through a reduced-order representation of the response of the entire device to the external stimuli, foreseen to finally feed a Monte Carlo uncertainty quantification engine. Results: Preliminary results relevant to a single-axis resonant Lorentz force micro-magnetometer have shown a noteworthy capability of the proposed multiscale deep learning method to account for the mentioned uncertainty sources at the microscale. Conclusion: A promising two-scale deep learning approach has been proposed for polysilicon MEMS sensors to account for both materials- and geometry-governed uncertainties and to properly describe the scale-dependent response of MEMS devices.

Publisher

Bentham Science Publishers Ltd.

Subject

Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of the Geometry of a Microelectromechanical System Testing Device for SiO2—Polysilicon Interface Characterization;ECSA 2023;2023-11-15

2. On-Chip Tests for the Characterization of the Mechanical Strength of Polysilicon;The 9th International Electronic Conference on Sensors and Applications;2022-11-01

3. Uncertainty Quantification at the Microscale: A Data-Driven Multi-Scale Approach;The 9th International Electronic Conference on Sensors and Applications;2022-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3