Ultrasound-Assisted Ionic Liquid Microextraction for Preconcentration of Cadmium in Water, Vegetables and Hair Samples Prior to FAAS Determination

Author:

Hafez Eman M.1,Sheikh Ragaa El1,Sayqal Ali A.2ORCID,AlMasoud Najla3,Gouda Ayman A.1ORCID

Affiliation:

1. Chemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt

2. Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia

3. Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Abstract

Background:: Cadmium (Cd2+) is considered to be one of the most important hazardous heavy metals due to its toxicity for living organisms at low concentration levels. Therefore, the estimation of trace Cd2+ in different types of various samples is a very important objective for chemists using effective methods. In the present work, a novel, green, easy and fast ultrasoundassisted ionic liquid-dispersive liquid phase microextraction technique (UA-IL-DLPME) was developed to preconcentrate and determine trace quantities of cadmium (Cd2+) ions from real samples, prior to detection by FAAS. Methods: The proposed technique is based on utilization of ionic liquid (IL) (1-hexyl-3- methylimidazolium tris(pentafluoroethyl)trifluorophosphate [HMIM][FAP]) as an extraction solvent for Cd2+ ions after complexation with 2-(6-methylbenzothiazolylazo)-6-nitrophenol (MBTANP) at pH 7.0. The impact of different analytical parameters on the microextraction efficiency was investigated. The validation of the proposed procedure was verified by the test of two certified reference materials (TMDA-51.3 fortified water, SRM spinach leaves 1570A) applying the standard addition method. Results: In the range of 2.0-200 μg L−1, the calibration graph was linear. Limit of detection, preconcentration factor and the relative standard deviation (RSD %, 100 μg L-1, n=5) as precision was 0.1 μg L-1, 100 and 3.1%, respectively. Conclusion: Green UA-IL-DLPME method was developed and applied to preconcentrate and determine trace quantities of Cd2+ in real water, vegetables and hair samples with satisfactory results.

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3