Natural Lipids as Structural Components of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Topical Delivery

Author:

Dobreva Mirena1ORCID,Stefanov Stefan1ORCID,Andonova Velichka1ORCID

Affiliation:

1. Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, Varna, Bulgaria

Abstract

Background: Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) are useful drug delivery systems for dermal application. Thanks to their biocompatible and biodegradable profile, these carriers offer many advantages such as enhanced bioavailability, low toxicity, viable drug targeting and controlled release. SLN and NLC are composed of well-tolerated lipids, including natural fats and oils that are successfully used in the pharmaceutical and cosmetic dermal formulation. Objective: This article presents an overview of the benefits of selecting natural fats and oils as structural components of SLN and NLC for topical application. Methods: This review is based on data published over the past 20 years about the development of stable and nontoxic lipid nanoparticles with natural lipids. We shed light on the role of natural fats in skin restoration, as well as on the contributed penetration and occlusive properties of SLN and NLC. Results: The deliberate selection of excipients (type and lipid ratio) influences the quality of the final dermal formulation. Natural lipids show good compatibility with different active molecules and are able to create stable lipid matrices that facilitate the biopharmaceutical properties of lipid nanoparticles. Patents involving natural fats and oils in SLN and NLC composition are listed, yet it is important to note that the approved marketed formulations are mainly cosmetic, not pharmaceutical, products. Conclusion: Natural lipids can enhance topical drug delivery by adding their ability of improving skin penetration and hydration to the permeation and occlusion properties of SLN and NLC.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3