Optimization and evaluation of microwave-assisted curcumin-loaded nanostructured lipid carriers: a green approach

Author:

Lohan Sunidhi,Verma Ravinder,Kaushik Deepak,Bhatia MeenakshiORCID

Abstract

Abstract Background The goal of current research work is to develop and optimize curcumin-encapsulated nanostructured lipid carriers and to enhance therapeutic effect of curcumin after oral administration. Method Curcumin-loaded nanostructured lipid carriers were developed by a single-step one-pot microwave-assisted technique. The preparation of curcumin-loaded nanostructured lipid carriers was optimized by employing two factors and three levels central composite design (Design Expert® software) taking concentration of lipid blend and surfactant as independent variables and particle size, polydispersity index, and zeta potential as dependent variables, to investigate the effect of formulation ingredients on the physicochemical characteristics of nanostructured lipid carriers. The optimized batch was investigated by Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, high-resolution transmission electron microscopy, in vitro drug release, stability studies, cytotoxicity, and in vivo anthelmintic studies. Results The average particle size, polydispersity index, and zeta potential of the optimized batch were found to be 144 nm, 0.301, and − 33.2 mV, respectively, with an entrapment efficiency of 92.48%. The results of high-resolution transmission electron microscopy confirmed spherical shape of particles. In vivo antiparasitic studies included determining the duration of paralysis and eventual death of earthworms in the presence of test samples. The results of in vivo studies showed good anthelmintic potential for curcumin-loaded nanostructured lipid carriers as compared to albendazole in different concentrations. Cytotoxicity studies also confirmed the formulation to be nontoxic to Vero cells. In vitro drug release study showed 90.76 ± 0.01% release of curcumin in 24 h by following the Korsmeyer-Peppas model of release kinetics. Conclusion The aforementioned results imply that microwave-developed nanostructured lipid carriers could be promising drug carriers and will aid in their fabrication for oral administration as a possible alternative for the treatment of other parasitic infections. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3