Nanostructured Lipid Carriers (NLCs) as Effective Drug Delivery Systems: Methods of Preparation and their Therapeutic Applications

Author:

Alatawi Hind M.1,Alhwiti Shemah S.1,Alsharif Khwlah A.1,Albalawi Shyma S.1,Abusaleh Shroug M.1,Sror Ghada K.1,Qushawy Mona23ORCID

Affiliation:

1. Pharm D program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia

2. Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia

3. Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai, 45511, Egypt

Abstract

Abstract: One of the drug delivery technologies is nanostructured lipid carriers (NLCs), which improve drug permeability and thus bioavailability. NLCs are nanoparticles made from a lipid matrix made up of a mixture of solid and liquid lipids. The inclusion of liquid lipids is useful in lowering the ordered structure of solid lipids, increasing nanoparticle loading capacity, and drug entrapment efficiency within NLCs. Hot homogenization, cold homogenization, micro-emulsion, emulsification-solvent diffusion, high shear homogenization, and/or ultrasonication techniques, double emulsion technique, melting dispersion method, membrane contractor technique, and evaporation solvent injection are some of the methods that can be used to make NLCs. Both hydrophilic and lipophilic medicines can be carried out by NLCs. They can deliver medications in a variety of ways, including oral, topical, transdermal, parenteral, and ophthalmic. During the process of preparing this review article, several distinct studies and patent reports about various methods of NLCs formulations, their various therapeutic applications, and various routes of administration were investigated and discussed. The study conducts an in-depth evaluation of the most recent research publications and patents. NLCs have been utilized to treat a variety of disorders, including cancer, fungal infections, bacterial infections, inflammation, liver diseases, and ocular infections, due to their benefits. They can deliver medications to specific locations throughout the body, allowing for drug targeting and a reduction in unwanted side effects. They can also be used to improve bioavailability, reduce the medication's supplied dose, and improve the drug's pharmacological activity.

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3