Gene Expression in Osteoblasts and Osteoclasts Under Microgravity Conditions: A Systematic Review

Author:

Chatziravdeli Vasiliki1,Katsaras George N.2,Lambrou George I.1

Affiliation:

1. Graduate Program �Metabolic Bones Diseases�, National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece

2. Neonatal Intensive Care Unit, General Hospital of Nikaia �Aghios Panteleimon�, Andrea Petrou Mantouvalou Str. 3, 18454, Nikaia, Piraeus, Greece

Abstract

Background: Microgravity (µG) negatively influences bone metabolism by affecting normal osteoblast and osteoclast function. µG effects on bone metabolism has been an extensive field of study in recent years, due to the challenges presented by space flight. Methods: We systematically reviewed research data from genomic studies performed in real or simulated µG, on osteoblast and osteoclast cells. Our search yielded 50 studies, of which 39 concerned cells of the osteoblast family and 11 osteoclast precursors. Results: Osteoblastic cells under µG show a decreased differentiation phenotype, proved by diminished expression levels of Alkaline Phosphatase (ALP) and Osteocalcin (OCN) but no apoptosis. Receptor Activator of NF-κB Ligand (RANKL)/ Osteoprotegerine (OPG) ratio is elevated in favor of RANKL in a time-dependent manner, and further RANKL production is caused by upregulation of Interleukin- 6 (IL-6) and the inflammation pathway. Extracellular signals and changes in the gravitational environment are perceived by mechanosensitive proteins of the cytoskeleton and converted to intracellular signals through the Mitogen Activated Protein Kinase pathway (MAPK). This is followed by changes in the expression of nuclear transcription factors of the Activator Protein-1 (AP-1) family and in turn of the NF-κB, thus affecting osteoblast differentiation, cell cycle, proliferation and maturation. Pre-osteoclastic cells show increased expression of the marker proteins such as Tryptophan Regulated Attenuation Protein (TRAP), cathepsin K, Matrix Metalloproteinase-9 (MMP-9) under µG conditions and become sensitized to RANKL. Conclusion: Suppressing the expression of fusion genes such as syncytine-A which acts independently of RANKL, could be possible future therapeutic targets for microgravity side effects.

Publisher

Bentham Science Publishers Ltd.

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3