Receptors Implicated in Microgravity-Induced Bone Loss

Author:

Martinez Elizabeth Ferreira1ORCID,Pelegrine André Antonio23ORCID,Holliday L. Shannon4ORCID

Affiliation:

1. Division of Oral Pathology and Cell Biology, Faculdade São Leopoldo Mandic, Campinas 13045-755, Brazil

2. Division of Implant Dentistry, Faculdade São Leopoldo Mandic, Campinas 13045-755, Brazil

3. R-Crio Células-Tronco, Campinas 13098-324, Brazil

4. Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32611, USA

Abstract

For humans to explore and colonize the universe, both engineering and physiological obstacles must be successfully addressed. A major physiological problem is that humans lose bone rapidly in microgravity. Understanding the underlying mechanisms for this bone loss is crucial for designing strategies to ameliorate these effects. Because bone physiology is entangled with other organ systems, and bone loss is a component of human adaptation to microgravity, strategies to reduce bone loss must also account for potential effects on other systems. Here, we consider the receptors involved in normal bone remodeling and how this regulation is altered in low-gravity environments. We examine how single cells, tissues and organs, and humans as a whole are affected by low gravity, and the role of receptors that have been implicated in responses leading to bone loss. These include receptors linking cells to the extracellular matrix and to each other, alterations in the extracellular matrix associated with changes in gravity, and changes in fluid distribution and fluid behavior due to lack of gravity that may have effects on receptor-based signaling shared by bone and other regulatory systems. Inflammatory responses associated with the environment in space, which include microgravity and radiation, can also potentially trigger bone loss.

Funder

R-Crio Células-Tronco

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)—Research Productivity Fellowship to Elizabeth Ferreira Martinez

Publisher

MDPI AG

Reference246 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3