Biocompatibility and dimensional stability through the use of 3D‐printed scaffolds made by polycaprolactone and bioglass‐7: An in vitro and in vivo study

Author:

Lim Ho‐Kyung1,Song In‐Seok2ORCID,Choi Won‐Cheul3,Choi Young‐Jun4,Kim Eun‐young4,Phan Thi Hong Tham4,Lee Ui‐Lyong4ORCID

Affiliation:

1. Department of Oral & Maxillofacial Surgery Korea University Guro Hospital Seoul Korea

2. Department of Oral & Maxillofacial Surgery Korea University Anam Hospital Seoul Korea

3. Department of Orthodontics, Dental Center Chung‐Ang University Hospital Seoul Korea

4. Department of Oral & Maxillofacial Surgery Chung‐Ang University College of Medicine Seoul Korea

Abstract

AbstractPurposeThis experiment aimed to observe the differences in biological properties by producing BGS‐7 + PCL scaffolds with different weight fractions of BGS‐7 through 3D printing and to confirm whether using the scaffold for vertical bone augmentation is effective.Materials and MethodsCube‐shaped bioglass (BGS‐7) and polycaprolactone (PCL) scaffolds with different weight fractions (PCL alone, PCL with 15% and 30% BGS‐7) are produced using 3D printing. The surface hydroxyapatite (HA) apposition, the pH change, proliferation and attachment assays, and various gene expression levels are assessed. After a 7‐mm implant was inserted 3 mm into the rabbit calvaria, vertical bone augmentation is performed around the implant and inside the scaffold in four ways: scaffold only, scaffold+bone graft, bone graft only, and no graft. Sacrifice is performed at 6, 12, and 24 weeks, and the various parameters are compared radiographically and histologically.ResultsHA apposition, cell proliferation, cell attachment, and expression of osteogenic genes increase as the proportion of BGS‐7 increase. In the in vivo test, a higher bone–implant contact ratio, bone volume ratio, bone mineral density, and new bone area are observed when the scaffold and bone grafts were used together.ConclusionThe 3D‐printed scaffold, a mixture of BGS‐7 and PCL, exhibit higher biological compatibility as the proportion of BGS‐7 increase. Additionally, the use of scaffold is effective for vertical bone augmentation.

Funder

Korea Institute for Advancement of Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3