A Prognostic Model to Improve Asthma Prediction Outcomes Using Machine Learning

Author:

M R Pooja,Ravi Vinayakumar,Lokesh Gururaj Harinahalli,Al Mazroa Alanoud,Ravi Pradeep

Abstract

Purpose The utility of predictive models for the prognosis of asthma disease that rely on clinical history and findings has been on the constant rise owing to the attempts to achieve better disease outcomes through improved clinical processes. With the prognostic model, the primary focus is on the search for a combination of features that are as robust as possible in predicting the disease outcome. Clinical decisions concerning obstructive lung diseases such as Chronic obstructive Pulmonary Disease (COPD) have a high chance of leading to results that can be misinterpreted with wrong inferences drawn that may have long-term implications, including the targeted therapy that can be mistakenly beset. Hence, we suggest data-centric approaches that harness learning techniques to facilitate the disease prediction process and augment the inferences through clinical findings. Methods A dataset containing information on both symptomatic representations and medical history in the form of categorical data along with lung function parameters, which were estimated using a spirometer (with the data basically being quantitative (numerical) in nature) was used. The Naïve Bayes classifier performed comparatively well with the optimized feature set. The adoption of One-Class Support Vector Machines (OCSVM) as an alternative method to sampling data has resulted in the selection of an ideal representation of the data rather than the regular sampling approach that is used for undersampling. Results The model was able to predict the disease outcome with a precision of 86.1% and recall of 84.7%, accounting for an F1 measure of 84.5%.The Area under Curve(AUC) and Classification Accuracy (CA) were evaluated to be 92.2% and 84.7% respectively. Conclusion Incorporating domain knowledge into the prediction models involves identifying clinical features that are most relevant to the process of disease classification using prior knowledge about the disease and its contributing factors, which can significantly enhance the productivity of the models. Feature engineering is centric on the use of domain knowledge within clinical prediction models and commonly results in an optimized feature set. It is evident from the experimental results that using a combination of medical history data and significant clinical findings result in a better prognostic model

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3