Deep Learning Intervention for Health Care Challenges: Some Biomedical Domain Considerations

Author:

Tobore IgbeORCID,Li JingzhenORCID,Yuhang LiuORCID,Al-Handarish YousefORCID,Kandwal AbhishekORCID,Nie ZedongORCID,Wang LeiORCID

Abstract

The use of deep learning (DL) for the analysis and diagnosis of biomedical and health care problems has received unprecedented attention in the last decade. The technique has recorded a number of achievements for unearthing meaningful features and accomplishing tasks that were hitherto difficult to solve by other methods and human experts. Currently, biological and medical devices, treatment, and applications are capable of generating large volumes of data in the form of images, sounds, text, graphs, and signals creating the concept of big data. The innovation of DL is a developing trend in the wake of big data for data representation and analysis. DL is a type of machine learning algorithm that has deeper (or more) hidden layers of similar function cascaded into the network and has the capability to make meaning from medical big data. Current transformation drivers to achieve personalized health care delivery will be possible with the use of mobile health (mHealth). DL can provide the analysis for the deluge of data generated from mHealth apps. This paper reviews the fundamentals of DL methods and presents a general view of the trends in DL by capturing literature from PubMed and the Institute of Electrical and Electronics Engineers database publications that implement different variants of DL. We highlight the implementation of DL in health care, which we categorize into biological system, electronic health record, medical image, and physiological signals. In addition, we discuss some inherent challenges of DL affecting biomedical and health domain, as well as prospective research directions that focus on improving health management by promoting the application of physiological signals and modern internet technology.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3