Docking Complexes of Active Phytochemicals with VK-deficient Genes

Author:

Rajagopal Shalini12,Nair Archa13,Digraskar Rutuja14,Allu Alekya1,Naravula Jalaja5,Menon Saji4,Nallapeta Sivaramaiah6,Kumar S Anil5,Vuree Sugunakar7,Reddy G. Bhanuprakash8,Kishor P.B. Kavi9,Nair Bipin G.1,Pillai Girinath G.3,Suravajhala Prashanth16,Suravajhala Renuka16

Affiliation:

1. Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India

2. Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur 522213, AP, India

3. Nyro Research India, Discovery Chemistry, Cochin, Kerala 682021, India

4. NanoTemper Technologies, Bangalore, India

5. Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur 522213, AP, India

6. Bioclues.org, Hyderabad 500072, India

7. School of Bioengineering and Biosciences, Hyderabad, India

8. Department of Biochemistry, ICMR - National Institute of Nutrition, Hyderabad, India

9. Department of Genetics, Osmania University, Hyderabad 500 007, India

Abstract

Background:: Vitamin K (VK) deficiency occurs when the body does not have enough vitamin K to produce proteins that are essential for blood clotting and bone health. Vitamin K is a cofactor that plays a major role in various comorbidities. Over the years, efforts have been made to identify the interaction between natural compounds, such as K vitamers, that could play a sig-nificant role in regulation of the blood coagulation. We intended to obtain insights into the poten-tial therapeutic implications of phytochemicals for treating VK deficiency-related diseases by in-vestigating the interactions between phytochemicals and VK-deficient genes. Methods:: On active phytochemical docking complexes with VK-deficient genes, there is no spe-cific information available as of yet. In this computationally aided docking study, we were inter-ested in finding the pathogenic blood coagulation-related genes that are linked to VK deficiency. Based on literature reviews and databases, bioactive phytochemicals and other ligands were con-sidered. To provide precise predictions of ligand-protein interactions, docking parameters and scoring algorithms were thoroughly optimized. We have performed molecular docking studies and observed the way the complexes interact. Results:: Specific binding interactions between active phytochemicals and VK pathogenic muta-tions have been identified by the docking study. Hydrogen bonds, van der Waals interactions, and hydrophobic contacts, which are indications of high binding affinities, have been observed in the ligand-protein complexes. Few phytochemicals have demonstrated the ability to interact with the targets of VK-deficient genes, indicating their capacity to modify pathways relevant to VK defi-ciency. The results of the docking study have explained the three pathogenic genes, viz. VWF, F8, and CFTR, wherein VWF and F8 play important roles in blood coagulation and people with cyst-ic fibrosis, to have a deficiency in vitamin K. Thirty-five compounds from different plant and natural sources were screened through molecular docking, out of which two compounds have been considered as controls, including curcumin and warfarin (R-warfarin and S-warfarin), which are the most common anticoagulants readily available in the market. They act by inhibiting vita-min K epoxide reductase (VKOR), which is needed for the gamma-carboxylation of vitamin K-dependent factors. Conclusion:: A focus on other compounds, like theaflavin, ellagic acid, myricetin, and catechin was also made in this study as they show more binding affinity with the three pathogenic proteins. Based on the results, the complexes have been found to possess great potential and thus may be considered for further interaction studies. The potential for active phytochemicals to generate docking complexes with VK-deficient genes is highlighted in this computational analysis. Health disorders related to VK insufficiency may be significantly impacted by these interactions. To val-idate the expected interactions and determine the therapeutic potential of the identified phyto-chemicals, more experimental research, including in vitro and in vivo experiments, is needed.

Funder

SERB-DST, Government of India

Publisher

Bentham Science Publishers Ltd.

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3