Trends on the Rapid Expansion of Supercritical Solutions Process Applied to Food and Non-food Industries

Author:

Gomes Maria T.M.S.1,Santana Ádina L.1,Santos Diego T.1,Meireles Maria A.A.1

Affiliation:

1. LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas) Cidade Universitaria "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil

Abstract

Background: The supercritical fluids applied to particle engineering over the last years have received growing interest from the food and non-food industries, in terms of processing, packaging, and preservation of several products. The rapid expansion of supercritical solutions (RESS) process has been recently reported as an efficient technique for the production of free-solvent particles with controlled morphology and size distribution. Objective: In this review, we report technological aspects of the application of the RESS process applied to the food and non-food industry, considering recent data and patent survey registered in literature. Methods: The effect of process parameters cosolvent addition, temperature, pressure, nozzle size among others, during RESS on the size, structure and morphology of the resulted particles, and the main differences about recent patented RESS processes are reviewed. Results: Most of the experimental works intend to optimize their processes through investigation of process parameters. Conclusion: RESS is a feasible alternative for the production of particles with a high yield of bioactive constituents of interest to the food industry. On the other hand, patents developed using this type of process for food products are very scarce, less attention being given to the potential of this technique to develop particles from plant extracts with bioactive substances.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

CNPq for post-doctoral fellowship

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3