Same Target, Different Therapeutic Outcomes: The Case of CAY10471 and Fevipiprant on CRTh2 Receptor in Treatment of Allergic Rhinitis and Asthma

Author:

Issahaku Abdul R.1,Agoni Clement1,Soremekun Opeyemi S.1,Kubi Patrick A.1,Kumi Ransford O.1,Olotu Fisayo A.1,Soliman Mahmoud E.S.1

Affiliation:

1. Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa

Abstract

Objective: Prostaglandin 2 (PGD2) mediated signalling of Chemoattractant Receptorhomologous molecule expressed on Th2 cells (CRTh2) receptor has been implicated in the recruitment of inflammatory cells. This explains the design of highly selective compounds with innate abilities to antagonize PGD2-CRTh2 interactions and prevent pro-inflammatory allergies such as rhinitis and uncontrolled asthma. The development of PGD2-competitive CRTh2 binders; CAY10471 and Fevipiprant represent remarkable therapeutic progress even though they elicit disparate pharmacological propensities despite utilizing the same binding pocket. Methods & Results: In this study, we seek to pinpoint the underlying phenomenon associated with differential CRTh2 therapeutic inhibition by CAY10471 and Fevipiprant using membraneembedded molecular dynamics simulation. Findings revealed that the common carboxylate group of both compounds elicited strong attractive charges with active site Arg170 and Lys210. Interestingly, a distinctive feature was the steady occurrence of high-affinity salt-bridges and an Arg170-mediated pi-cation interaction with the tetrahydrocarbozole ring of CAY10471. Further investigations into the active site motions of both ligands revealed that CAY10471 was relatively more stable. Comparative binding analyses also revealed that CAY10471 exhibited higher ΔG, indicating the cruciality of the ring stabilization role mediated by Arg170. Moreover, conformational analyses revealed that the inhibitory activity of CAY10471 was more prominent on CRTh2 compared to Fevipiprant. Conclusion: These findings could further advance the strategic design of novel CRTh2 binders in the treatment of diseases related to pro-inflammatory allergies.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3