Affiliation:
1. Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
Abstract
In this paper, vehicle stability enhancement, based on the integrated vehicle control notion, is presented. A new method for adaptive optimal distribution of braking and lateral tyre forces is employed. The control inputs considered are the individual wheel steering and braking for each wheel. Since a unique set of tyre forces satisfying control objectives cannot be easily determined, an adaptive optimization problem subjected to two equality and four inequality constraints has been solved to achieve an optimal solution. A proper adaptation mechanism is suggested to minimize the negative effects of direct yaw moment control, such as the undesirable decrease in the total speed of the vehicle. The effectiveness of the proposed vehicle stability enhancement system, especially online balancing of tyre forces in an optimal form with and without an adaptation mechanism, is demonstrated through digital simulations. A comprehensive non-linear vehicle dynamics model is utilized for simulation purposes. The results indicate that the proposed control system can effectively utilize the tyres' frictional forces and significantly improve the vehicle stability and handling performances.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献