Sliding Mode-Based Slip Control of Compact Electric Vehicle Truck for Varying Load and Yaw Rate

Author:

Kim Hyeon-Woo,Cha Hyun-Rok

Abstract

Vehicle stability is a critical problem, especially for compact electric vehicle (EV) trucks, owing to the impact of the cargo weight and cornering characteristics. In this study, this problem was approached by mathematically formulating the change in the understeer characteristics of an EV truck as variable mass understeer gradient (VMUG) according to the vehicle cargo weight to design the reference yaw rate without the need to consider cornering stiffness. Comparison was made with the conventional methods by applying the VMUG-based slip control while simulating the yaw rate and side-slip tracking performance of the compact EV model for normal loading and overloading conditions. The simulation results demonstrate the superior performance of the proposed method compared to the existing methods. The proposed method has the potential for application for stability enhancement in non-electric and general-purpose vehicles as well.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3