Affiliation:
1. Kanagawa Institute of Technology Department of System Design Engineering Kanagawa, Japan
Abstract
The aim of this paper is not only to present various methods for combining lateral force and yaw moment control but also to find out how the mix between them should be applied to maximize the stability limit as well as vehicle responsiveness. Approximated two-degree-of-freedom (2DOF) vehicle model responses of side-slip angle and yaw rate are used to introduce the required total lateral force and yaw moment control. Three different cases of combining lateral force and direct yaw moment control have been investigated using computer simulations. A direct yaw moment control to follow the yaw rate response only is taken as a comparison case in order to show the effect of the combined control on vehicle stability and responsiveness. A computer simulation of a closedloop driver-vehicle system subjected to quick lane change with braking is used to prove the influence of the combined control. It is found that the influence of the combined control on vehicle stability and responsiveness is significant.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献