Dynamic model of an air spring and integration into a vehicle dynamics model

Author:

Chang F1,Lu Z-H1

Affiliation:

1. State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University, Beijing, People's Republic of China

Abstract

It is worthwhile to design a more accurate dynamic model for air springs, to investigate the dynamic behaviour of an air spring suspension, and to analyse and guide the design of vehicles with air spring suspensions. In this study, a dynamic model of air spring was established, considering the heat transfer process of the air springs. Two different types of air spring were tested, and the experimental results verified the effectiveness of the air spring model compared with the traditional model. The key factors affecting the computation accuracy were studied and checked by comparing the results of the experiments and simulations. The new dynamic model of the air spring was integrated into the full-vehicle multi-body dynamics model, in order to investigate the air suspension behaviour and vehicle dynamics characteristics. The co-simulation method using ADAMS and MATLAB/Simulink was applied to integration of the air spring model with the full-vehicle multi-body dynamics model.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3