Numerical simulation and performance prediction of the ejection impact of air springs

Author:

Li Yu-Ru123ORCID,Xiao Shou-Ne2,Xie Jun-Ke1,Zhu Tao2

Affiliation:

1. College of Vehicle and Traffic Engineering, Henan University of science and Technology, Luoyang, Henan, China

2. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu, Sichuan, China

3. CRRC Qiqihar Rolling Stock Co., Ltd., Qiqihaer, Heilongjiang, China

Abstract

To address the challenges of applying air springs in high-speed rail vehicle ejections, the ejection of a driver’s cabin structure is focused on in this study, and an ejection simulation model of an air spring is proposed using a series-parallel combination. The model’s accuracy is verified through virtual collision analysis of the driver’s cabin in a rail vehicle. The ejection velocity exhibits a relative error of only 9.1%. The test vehicle, driven by an air spring, achieves a maximum kinetic energy of 415 kJ, meeting the initial target value of no less than 408 kJ. Additionally, the analysis of the wheel-rail interaction reveals that the vertical lift and lateral displacement of the test vehicle are within acceptable limits, measuring 5.49 and 9.89 mm, respectively, without exceeding the wheel flange height and tread width. These results demonstrate that an air spring with a series-parallel combination can successfully propel the test vehicle to conduct the driver’s cabin collision tests without any derailment or overturning. Research on the ejection performance of air springs in this configuration offers a new driving and ejection method for applying air springs in rail vehicles, drones, and air-launched missiles, presenting promising prospects for future applications.

Funder

Sichuan Outstanding Youth Fund

Key Technologies R & D Program of Henan Province

National Natural Science Foundation of China

Postdoctoral Foundation of Heilongjiang Province, China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3