Development and Analysis of a Multibody Dynamics Suspension Air Spring Model as a Function of Sprung Mass, Un-Sprung Mass, and Design Height

Author:

Adams Bailey1

Affiliation:

1. Iowa State University, Agricultural & Biosystems Engineering, USA

Abstract

<div>Air spring systems are challenging to mathematically model due to the complexity of their nonlinear dynamic characteristics. Numerous air spring mechanical and thermodynamic models have been proposed, but this study focused on the development and analysis of a new thermodynamic air spring model under a polytropic thermodynamic process that could accurately represent the force output in a multibody dynamics (MBD) virtual suspension subsystem. This model considered function inputs of sprung mass, un-sprung mass, and design height to efficiently generate updated air spring properties for new vehicle configurations, specifically for a self-propelled sprayer application. After this model was validated against physical ground-truth sensor data, it was utilized in a sensitivity study to experimentally test an alternative air spring component and to understand the resulting performance effect on an operator comfort key performance indicator.</div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3