Closed-loop control of start of combustion using difference pressure management

Author:

Lee Kangyoon1,Yoon Maru2,Son Myeong-hyeon2,Sunwoo Myoungho2

Affiliation:

1. Automotive Control and Electronic Laboratory, Hanyang University, Seoul, Republic of Korea

2. Department of Automotive Engineering, Hanyang University, Seongdong-gu, Seoul, Republic of Korea

Abstract

A great deal of attention is being paid to the common-rail direct injection (CRDI) diesel engine as a promising technology for enhancing engine performance and satisfying stringent emission regulations. In a conventional CRDI diesel engine, the start of combustion (SOC) is controlled in an open-loop manner by adjusting the start of energizing (SOE) of an injector. The open-loop SOC control cannot compensate for unexpected variations in the injection delay and ignition delay resulting from cycle-by-cycle variation, cylinder-to-cylinder variation, production variation, and ageing. In this study, cylinder pressure was investigated as a means for controlling the SOC of a CRDI diesel engine. Various pressure variables were compared for the purpose of detecting the SOC of a CRDI diesel engine. The crank angle position at which the difference pressure becomes 10 bar (CADP10) was selected as the pressure variable for the detection of the SOC. The control performance was evaluated with engine-dynamometer experiments in steady and transient operating conditions. The experimental results showed that difference pressure managing can be effectively used for real-time detection of the SOC. Furthermore, the SOC detection technique enables the fuel control strategy to be transformed from an open-loop scheme to a closed-loop scheme.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference4 articles.

1. Engine control system using a cylinder pressure sensor

2. Methods for engine supervision and control based on cylinder pressure information

3. Ferguson C. R. Internal combustion engines — applied thermosciences 1986, pp. 371–426 (John Wiley & Sons, Inc., New York).

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3