Combustion parameter evaluation of diesel engine via vibration acceleration signal

Author:

Zhang Pan1,Gao Wenzhi1ORCID,Li Yong1,Wei Zhaoyi1

Affiliation:

1. State Key Laboratory of Engines, Tianjin University, Tianjin, China

Abstract

Efficient combustion control has increasingly become a quality requirement for automobile manufacturers because of its impact on pollutant and greenhouse gas emissions. In view of this, the management system development of modern internal combustion engines is mainly aimed at combustion control. The real-time detection of in-cylinder pressure characteristic parameters has a considerable significance on the closed-loop combustion control of the internal combustion engine. This paper presents a detection method in which the start of combustion, peak pressure, maximum pressure rise rate, and phase of maximum pressure rise rate are identified through vibration acceleration signal. In order to analyze the relationship between vibration and in-cylinder pressure signal, experimental data are acquired in a diesel engine by implementing various injection strategies and engine operating conditions (speed and load). The results show that the start of combustion can be detected by analyzing its relationship with the peak position of the filtered vibration signal, and the phase of the maximum pressure rise rate can be identified by examining its relationship with the zero-cross position that is adjacent to the right of the peak position. Moreover, the filtered vibration signals are also truncated in the same length and utilized as inputs for algorithms to detect the peak pressure and the maximum pressure rise rate. The algorithms are mainly performed on data compression (or feature extraction) and target regression. Major algorithms, such as one-dimensional convolutional neural network, compression sensing, wavelet decomposition, multilayer perceptron, and support vector machine, are tested. Various experimental results verify that for the test engine the phase detection accuracy of the start of combustion and maximum pressure rise rate is less than 1.7°CA for a 95% prediction interval width. For the detection of the peak pressure and maximum pressure rise rate, the normalized error threshold is set as 0.05, then the accuracies can be not less than 95%.

Funder

state key laboratory of engine reliability

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3