In-cylinder pressure-based convolutional neural network for real-time estimation of low-pressure cooled exhaust gas recirculation in turbocharged gasoline direct injection engines

Author:

Jung Donghyuk1ORCID,Hwang Inyoung2,Jo Yuhyeok1,Jang Chulhoon1,Han Manbae3ORCID,Sunwoo Myoungho1,Chang Joon-Hyuk2

Affiliation:

1. Department of Automotive Engineering, Hanyang University, Seoul, Republic of Korea

2. Department of Electronics and Computer Engineering, Hanyang University, Seoul, Republic of Korea

3. Department of Mechanical and Automotive Engineering, Keimyung University, Daegu, Republic of Korea

Abstract

Low-pressure cooled exhaust gas recirculation is one of the most promising technologies for improving fuel efficiency of turbocharged gasoline direct injection engines. To realize the beneficial effects of the low-pressure cooled exhaust gas recirculation, the accurate estimation of the low-pressure cooled exhaust gas recirculation rate is essential for precise low-pressure cooled exhaust gas recirculation control. In this respect, previous studies have suggested in-cylinder pressure-based low-pressure cooled exhaust gas recirculation models to obtain the low-pressure cooled exhaust gas recirculation rate into the cylinders with fast response. However, these methods require considerable manual process of feature engineering to extract and analyze the combustion characteristics from the cylinder pressure traces. Furthermore, the performance of the entire model is limited solely to certain hand-crafted characteristics and their mathematical formulations. To resolve these limitations, we propose an in-cylinder pressure-based convolutional neural network for low-pressure cooled exhaust gas recirculation estimation. Because the convolutional neural network model automatically learns the complex function between the raw input of the high-dimensional cylinder pressure traces and the low-pressure cooled exhaust gas recirculation rate through an end-to-end deep learning framework, this convolutional neural network model provides a more effective and precise modeling process compared to the conventional combustion characteristics-based regression models. The proposed convolutional neural network model consists of the input layer with the previous consecutive cycles of the pressure traces to resolve the model uncertainty from cycle-to-cycle variations. This input layer is connected to one convolutional layer, two fully connected layers, and the final output layer that is the target low-pressure cooled exhaust gas recirculation rate. The proposed model was trained, validated, and tested using a total of 50,000 cycles of engine experimental data under various transient driving conditions. The remarkable accuracy of the proposed model was evaluated with R2 values over 0.99 and root mean square error values of less than 1.5% under the transient conditions. Moreover, the real-time performance and low memory requirement were also verified on the target embedded platform.

Funder

national research foundation of korea

ministry of education

Industrial Strategy Technology Development Program

strategic international collaborative research program

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3