Transient elastohydrodynamic point contact analysis using a new coupled differential deflection method Part 2: Results

Author:

Holmes M. J. A.1,Evans H. P.1,Hughes T. G.1,Snidle R. W.1

Affiliation:

1. Cardiff University Mechanical Engineering and Energy Studies Division, Cardiff School of Engineering Cardiff, Wales, UK

Abstract

The paper presents results obtained using a transient analysis technique for point contact elastohydrodynamic lubrication (EHL) problems based on a formulation that effectively couples the elastic and hydrodynamic equations. Results are presented for transverse ground surfaces in an elliptical contact that show severe film thinning at the transverse limits of the contact area. This thinning is caused by transverse (side) leakage of the lubricant from the contact in the remaining deep valley features. Comparison is made between the elliptical contact results on the entrainment centreline and the equivalent line contact analysis. This confirms the importance of edge effects as a likely cause of film collapse and scuffing failure. The surface profiles used in the analysis are taken from test discs used in scuffing experiments and from gears used in micropitting tests. Side leakage is found to be sufficiently severe to cause microasperity contact in the numerical examples presented. This contact mainly occurs close to the edges of the corresponding Hertzian area and correlates in position with the location at which scuffing is found to first occur in the earlier experiments. Comparisons are made with other numerical results for point contact configurations with sinusoidally varying surface features obtained by Zhu (2000) and considerable differences are seen in the calculated extent of asperity contact. The differences are thought to be due to the simplified treatment of the lubrication equation adopted by Zhu.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3