Affiliation:
1. School of Engineering, University of Wales, College of Cardiff, Cardiff CF2 1YF
Abstract
The paper describes an elastohydrodynamic lubrication (EHL) model for collapse of the film in a contact of finite width between surfaces which have roughness aligned transverse to that of lubricant entrainment. The failure mechanism proposed is that of sideways leakage of the lubricant in the gaps that are present between the surfaces due to the valley features of the surface roughness. Under typical high temperature conditions with surfaces finished by conventional grinding, it is shown that the gap between the surfaces when lubricated is almost identical to that between the same dry surfaces in contact with the addition of a small land clearance equivalent to the nominal EHL film thickness. Analysis of idealized valley geometries leads to criteria for complete cavitation or significant loss of pressure between asperity contacts, but application of these criteria to a real contact suggests that scuffing occurs under conditions which are less severe than predicted by either of these simple failure models. Detailed analysis of leakage from the valley features in the transverse direction at the edges of a real elliptical contact shows that this can explain the complete loss of the film in a real contact, and this suggests a physical mechanism of scuffing.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献