Vision-Based Measurement of Part Deformation and Misalignment for Deformable Cylindrical Peg-in-Hole Tasks

Author:

Kim J. Y.1

Affiliation:

1. Department of Mechatronics Engineering, Tongmyong University of Information Technology, 535, Yongdang-dong, Nam-gu, Busan 608-711, Republic of Korea

Abstract

For successful assembly of deformable parts, information about their deformation and possible misalignments between the holes and their respective mating parts is essential. Such information can be mainly acquired from visual sensors. In this paper, part deformation and misalignment in cylindrical peg-in-hole tasks are measured by using a visual sensing system. First, the configuration and the specifications of the system, such as resolution, are described. Next, a series of experiments to measure the position of an arbitrary point are performed and its measurement accuracy is investigated. Then, an algorithm to estimate the centre-line and deformation of a cylindrical peg and an algorithm to divide and recognize a peg and a hole separately in an image are presented. On the basis of these algorithms, a series of experiments to measure part shape as part deformation are performed. Finally, an algorithm to select two views from the four on the image plane and an algorithm to estimate the centre of an occluded hole are presented. On the basis of these algorithms, a series of experiments to measure misalignment are performed. Experimental results show that the errors in measuring part deformation are approximately less than five or seven times the standard resolution of the system, and the errors in measuring misalignment are less than three or four times the standard resolution. Thereby, the system and the proposed algorithms are effective in measuring part deformation and misalignment and will dramatically increase the success rate in deformable assembly operations.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vision based control strategy to suppress residual vibration of flexible beams for robotic assembly using wrist motion;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-12-27

2. 用于测量孔轴装配参数的双目视觉方法;Laser & Optoelectronics Progress;2023

3. A review of robotic assembly strategies for the full operation procedure: planning, execution and evaluation;Robotics and Computer-Integrated Manufacturing;2022-12

4. Limp Component Design for Automatic Assembly – Classification Rating System and Design Rules;Procedia CIRP;2020

5. On-line 3-D system for the inspection of deformable parts;The International Journal of Advanced Manufacturing Technology;2011-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3