Thermo-mechanical induced vibration characteristics of shear deformable functionally graded ceramic—metal plates using finite element method

Author:

Talha M1,Singh B N1

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India

Abstract

This paper deals with the thermomechanical-induced vibration characteristics of shear deformable functionally graded material (FGM) plates. Theoretical formulations are based on higher-order shear deformation theory with a significant improvement in the transverse displacement using finite-element method. The mechanical properties of the plate are assumed to be temperature-dependent and graded in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. The temperature field is ascertained to be a uniform distribution over the plate surface and varied in the thickness direction only. The fundamental equations for FGM plates are derived using variational approach by considering traction-free boundary conditions on the top and bottom faces of the plate. A C0 continuous isoparametric Lagrangian finite-element with 13 degrees of freedom (DOF) per node have been used to accomplish the results. Convergence and comparison studies have been performed for square plates to demonstrate the efficiency of the present model. The numerical results are obtained for different thickness ratios, aspect ratios, volume fraction index, and temperature rise with different boundary conditions. The results reveal that the temperature field and the gradient in the material properties have significant effect on the vibration characteristics of the FGM plates.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3