Dynamic Analysis of 2D FG Porous Thick Cylindrical Shells Under Thermal Shock

Author:

Liu Juanyin1ORCID,Li Juan1ORCID

Affiliation:

1. Department of Basic Courses, Hebei Vocational, University of Industry and Technology, Shijiazhuang, 050091 Hebei, P. R. China

Abstract

In this research, a thick hollow cylindrical shell made of bidirectional functionally graded open cell porous materials under internal thermal shock according to the classical theory of linear thermo-elasticity is examined for the first time. The cylinder is made of a porous cellular material and its porosity varies along both radial and axial directions continuously. The governing motion equations are obtained by using 2D-axisymmetric theory of linear thermo-elasticity rather than shell theories. This theory represents thickness stretching and gives more precise results. Graded finite element method is employed to model the problem. Applying this method rather than conventional FEM leads to more accurate results, especially for dynamic analyses. The cubic higher order element is used for dividing the solution domain. To obtain transient temperatures, Crank–Nicolson algorithm is used and then the Newmark procedure is used to derive time responses of displacement and stress components. The time history of displacements and stress components for different radial and axial power law exponents, porosity coefficient, boundary conditions, length-to-thickness ratio and two different porosity patterns are investigated in detail. The obtained results show that thermal-induced vibration is generally caused by hoop stress, and frequency and amplitude of vibrations and velocity of stress waves are considerably influenced by the porosity distribution, porosity coefficient and power law exponents in both directions.

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3