Affiliation:
1. Institute of Aerospace Thermodynamics (ITLR), Universität Stuttgart, 70569 Stuttgart, Germany
2. MTU Aero Engines GmbH, 80995 Müinchen, Germany
Abstract
An advanced evaluation method for transient heat transfer experiments using thermochromic liquid crystals (TLCs) combining the advantages of standard hue and maximum intensity methods is presented. In order to obtain a global evaluation of locally correct heat transfer coefficients by using the one-dimensional solution of Fourier's equation, assuming heat conduction in a semi-infinite medium with a convective boundary condition, local input values have to be identified from measurements of the fluid and surface temperatures. For that reason, two different approaches have emerged. First, a two-dimensional numerical method has been adapted to evaluate the transient fluid temperature distributions in multi-pass systems from a few local measurements. Additionally, on the basis of latest calibration and indication experience of TLCs, especially in complex passages, an innovative temporal indication analysis method using a neural network has been implemented in the process of heat transfer evaluation.
Subject
Mechanical Engineering,Energy Engineering and Power Technology
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献