A New Hue Capturing Technique for the Quantitative Interpretation of Liquid Crystal Images Used in Convective Heat Transfer Studies

Author:

Camci C.1,Kim K.1,Hippensteele S. A.2

Affiliation:

1. The Pennsylvania State University, Aerospace Engineering Department, University Park, PA 16802

2. NASA Lewis Research Center, Internal Fluid Mechanics Division, Cleveland, OH 44135

Abstract

This study focuses on a new image processing based color capturing technique for the quantitative interpretation of liquid crystal images used in convective heat transfer studies. The present method is highly applicable to the surfaces exposed to convective heating in gas turbine engines. The study shows that, in single-crystal mode, many of the colors appearing on the heat transfer surface correlate strongly with the local temperature. A very accurate quantitative approach using an experimentally determined linear hue versus temperature relation is possible. The new hue-capturing process is discussed in detail, in terms of the strength of the light source illuminating the heat transfer surface, effect of the orientation of the illuminating source with respect to the surface, crystal layer uniformity, and the repeatability of the process. The method uses a 24-bit color image processing system operating in hue-saturation-intensity domain, which is an alternative to conventional systems using red-green-blue color definition. The present method is more advantageous than the multiple filter method because of its ability to generate many isotherms simultaneously from a single-crystal image at a high resolution, in a very time-efficient manner. The current approach is valuable in terms of its direct application to both steady-state and transient heat transfer techniques currently used for the hot section heat transfer research in air-breathing propulsion systems.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3