Design and Deployment of a Four-Degrees-of-Freedom Hovering Autonomous Underwater Vehicle for sub-Ice Exploration and Mapping

Author:

Stone W1,Hogan B1,Flesher C1,Gulati S1,Richmond K1,Murarka A1,Kuhlman G1,Sridharan M1,Siegel V1,Price R M1,Doran P T2,Priscu J3

Affiliation:

1. Stone Aerospace, Del Valle, Texas, USA

2. University of Illinois, Chicago, Illinois, USA

3. University of Montana, Missoula, Montana, USA

Abstract

This paper describes the 2008 and 2009 Antarctic deployments of the National Aeronautics and Space Administration ENDURANCE autonomous underwater vehicle (AUV). The goal of this project was to conduct three autonomous tasks beneath the ice cap 4 m thick of West Lake Bonney: first, to measure the three-dimensional (3D) water chemistry of the lake at prespecified coordinates; second, to map the underwater face of the Taylor Glacier; third, to chart the bathymetry of the lake bottom. At the end of each mission the AUV had to locate and return through a hole in the ice slightly larger than the outer diameter of the vehicle. During two 10-week deployments to Antarctica, in the austral summers of 2008 and 2009, ENDURANCE logged 243 h of sub-ice operational time, conducted 275 aqueous chemistry sonde casts, completed a 3D bathymetry survey over an area of 1.06 km2 at a resolution of 22 cm, and traversed 74 km beneath the ice cap of West Lake Bonney. Many of the characteristics and capabilities of ENDURANCE are similar to the behaviours that will be needed for sub-ice autonomous probes to Europa, Enceladus, and other outer-planet icy moons. These characteristics are also of great utility for terrestrial operations in which there is a need for an underwater vehicle to manoeuvre precisely to desired positions in 3D space or to manoeuvre and explore complicated 3D environments.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3