Situation-Specific Models of Color Differentiation

Author:

Flatla David R.1,Gutwin Carl1

Affiliation:

1. University of Saskatchewan

Abstract

Color is commonly used to represent categories and values in computer applications, but users with Color-Vision Deficiencies (CVD) often have difficulty differentiating these colors. Recoloring tools have been developed to address the problem, but current recolorers are limited in that they work from a model of only one type of congenital CVD (i.e., dichromatism). This model does not adequately describe many other forms of CVD (e.g., more common congenital deficiencies such as anomalous trichromacy, acquired deficiencies such as cataracts or age-related yellowing of the lens, or temporary deficiencies such as wearing tinted glasses or working in bright sunlight), and so standard recolorers work poorly in many situations. In this article we describe an alternate approach that can address these limitations. The new approach, called Situation-Specific Modeling (SSM), constructs a model of a specific user’s color differentiation abilities in a specific situation, and uses that model as the basis for recoloring digital presentations. As a result, SSM can inherently handle all types of CVD, whether congenital, acquired, or environmental. In this article we describe and evaluate several models that are based on the SSM approach. Our first model of individual color differentiation (called ICD-1) works in RGB color space, and a user study showed it to be accurate and robust (both for users with and without congenital CVD). However, three aspects of ICD-1 were identified as needing improvement: the calibration step needed to build the situation-specific model, and the prediction steps used in recoloring were too slow for real-world use; and the results of the model’s predictions were too coarse for some uses. We therefore developed three further techniques: ICD-2 reduces the time needed to calibrate the model; ICD-3 reduces the time needed to make predictions with the model; and ICD-4 provides additional information about the degree of differentiability in a prediction. Our final result is a model of the user’s color perception that handles any type of CVD, can be calibrated in two minutes, and can find replacement colors in near-real time ( ~ 1 second for a 64-color image). The ICD models provide a tool that can greatly improve the perceptibility of digital color for many different types of CVD users, and also demonstrates situation-specific modeling as a new approach that can broaden the applicability of assistive technology.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Human-Computer Interaction

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3